These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of oligodendrocyte apoptosis by sublytic C5b-9 is associated with enhanced synthesis of bcl-2 and mediated by inhibition of caspase-3 activation. Author: Soane L, Rus H, Niculescu F, Shin ML. Journal: J Immunol; 1999 Dec 01; 163(11):6132-8. PubMed ID: 10570303. Abstract: We have previously shown that generation of sublytic C5b-9, the membrane attack complex of complement, induces oligodendrocytes to enter cell cycle and reduces apoptotic cell death in vitro. In the present study, the cellular factors involved in apoptosis of oligodendrocyte progenitor cells and oligodendrocytes, and the inhibitory effect of C5b-9 on apoptotic process were investigated. Oligodendrocyte progenitor cells identified by mAb A2B5 that were isolated from neonatal rat brains were differentiated into oligodendrocytes in serum-free defined medium. The differentiation, which occurs simultaneously with apoptotic cell death, was associated with a rapid loss of bcl-2 mRNA and increased expression of caspase-3 mRNA. Activation of caspase-3 in differentiating cells was demonstrated by the generation of 17- and 12-kDa fragments of caspase-3 proenzyme and by cleavage of poly(ADP-ribose) polymerase, a specific caspase-3 substrate. Cell death associated with differentiation was inhibited by the caspase-3 inhibitor DEVD-CHO in a dose-dependent manner. Assembly of sublytic C5b-9 resulted in inhibition of caspase-3 activation. In addition, synthesis of BCL-2 protein in oligodendrocytes was significantly increased by C5b-9. The TNF-alpha-induced apoptosis of oligodendrocytes was also inhibited by C5b-9. These results indicate that up-regulation of BCL-2 protein and inhibition of caspase-3 activation are potential mechanisms by which C5b-9 increases survival of oligodendrocyte in vitro and possibly in vivo during inflammation and immune-mediated demyelination affecting the CNS.[Abstract] [Full Text] [Related] [New Search]