These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Author: Sekiguchi K, Yokoyama T, Kurabayashi M, Okajima F, Nagai R. Journal: Circ Res; 1999 Nov 26; 85(11):1000-8. PubMed ID: 10571530. Abstract: The sphingolipid metabolites, sphingosine (SPH), SPH 1-phosphate (S1P), and sphingosylphosphorylcholine (SPC), can act as intracellular as well as extracellular signaling molecules. These compounds have been implicated in the regulation of cell growth, differentiation, and programmed cell death in nonmyocytes, but the effects of sphingolipid metabolites in cardiac myocytes are not known. Cultured neonatal rat cardiac myocytes were stimulated with SPH (1 to 10 micromol/L), S1P (1 to 10 micromol/L), or SPC (0.1 to 10 micromol/L) for 24 hours to determine the effects of sphingolipid metabolites on the rates of protein synthesis and degradation. Stimulation with SPC led to an increase in the total amount of protein, an accelerated rate of total protein synthesis, and a decrease in protein degradation in a dose-dependent manner. However, S1P had little effect and SPH had no effect on total protein synthesis. In addition, stimulation with SPC led to a 1.4-fold increase in myocardial cell size and enhanced atrial natriuretic factor gene expression. Pretreatment of the cardiac myocytes with pertussis toxin or PD98059 attenuated the SPC-induced hypertrophic growth response. Further, stimulation with SPC increased phosphorylation of mitogen-activated protein kinase (MAPK) and stimulated MAPK enzyme activity. Finally, endothelin-1 stimulated the generation of SPC in cardiac myocytes. The observation that SPC induces a hypertrophic growth response in cardiac myocytes suggests that SPC may play a critical role in the development of cardiac hypertrophy. The effects of SPC could be mediated, in part, by activation of a G protein-coupled receptor and a MAPK signaling cascade.[Abstract] [Full Text] [Related] [New Search]