These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Author: Zhang HY, Phan SH. Journal: Am J Respir Cell Mol Biol; 1999 Dec; 21(6):658-65. PubMed ID: 10572062. Abstract: Fibroblast differentiation to the myofibroblast phenotype is associated with alpha-smooth-muscle actin (alpha-SMA) expression and regulated by cytokines. Among these, transforming growth factor (TGF)-beta(1) and interleukin (IL)-1beta can stimulate and inhibit myofibroblast differentiation, respectively. IL-1beta inhibits alpha-SMA expression by inducing apoptosis selectively in myofibroblasts via induction of nitric oxide synthase (inducible nitric oxide synthase [iNOS]). Because TGF-beta is known to inhibit iNOS expression, this study was undertaken to see if this cytokine can protect against IL-1beta-induced myofibroblast apoptosis. Rat lung fibroblasts were treated with IL-1beta and/or TGF-beta(1) and examined for expression of alpha-SMA, iNOS, and the apoptotic regulatory proteins bax and bcl-2. The results show that TGF-beta(1) caused a virtually complete suppression of IL-1beta-induced iNOS expression while preventing the decline in alpha-SMA expression or the myofibroblast subpopulation. TGF-beta(1) treatment also completely suppressed the IL-1beta-induced apoptosis in myofibroblasts. IL-1beta-induced apoptosis was associated with a significant decline in expression of the antiapoptotic protein bcl-2, which was prevented by concomitant TGF-beta(1) treatment. The level of the proapoptotic protein bax, however, was not significantly altered by either cytokine. These data suggest that TGF-beta(1) inhibits IL-1beta-induced apoptosis in myofibroblasts by at least two mechanisms, namely, the suppression of iNOS expression and the prevention of a decline in bcl-2 expression. Thus, TGF-beta(1) may be additionally important in fibrosis by virtue of this novel ability to promote myofibroblast survival by preventing the myofibroblast from undergoing apoptosis.[Abstract] [Full Text] [Related] [New Search]