These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetics of interactions of sendai virus envelope glycoproteins, F and HN, with endoplasmic reticulum-resident molecular chaperones, BiP, calnexin, and calreticulin.
    Author: Tomita Y, Yamashita T, Sato H, Taira H.
    Journal: J Biochem; 1999 Dec; 126(6):1090-100. PubMed ID: 10578061.
    Abstract:
    Sendai virus envelope glycoproteins, F and HN, mature during their transport through the endoplasmic reticulum (ER) and Golgi complex. To better understand their maturation processes in the ER, we investigated the time course of their interactions with three ER- resident molecular chaperones, BiP, calnexin (CNX), and calreticulin (CRT), in Sendai virus-infected HeLa cells. Pulse-chase and immunoprecipitation analyses using antibodies against each virus glycoprotein or ER chaperone revealed that F precursor interacted with CNX transiently (t(1/2)=8 min), while HN protein displayed longer and sequential interactions with BiP (t(1/2)=8 min), CNX (t(1/2)=15 min), and CRT (t(1/2)=20 min). HN interacted with the three ER chaperones not only as a monomer but also as a tetramer for several hours, suggesting mechanism(s) to undergo chaperone-mediated quality control of an assembled HN oligomer in the ER. The kinetics of dissociation of the HN-chaperone complexes exhibited a marked delay in the presence of proteasome inhibitors, suggesting that a part of HN associated with BiP, CNX, and CRT is destined to be degraded in the proteasome-dependent pathway. Further, the associations between virus glycoproteins and CNX or CRT were impaired by castanospermine, an inhibitor of ER glucosidase I and II, confirming that these interactions require monoglucosylated oligosaccharide on F(0) and HN peptides. These findings together suggest that newly synthesized F protein undergoes rapid maturation in the ER through a transient interaction with CNX, whereas HN protein requires more complex processes involving prolonged association with BiP, CNX, and CRT for its quality control in the ER.
    [Abstract] [Full Text] [Related] [New Search]