These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient functional coupling of the human D3 dopamine receptor to G(o) subtype of G proteins in SH-SY5Y cells. Author: Zaworski PG, Alberts GL, Pregenzer JF, Im WB, Slightom JL, Gill GS. Journal: Br J Pharmacol; 1999 Nov; 128(6):1181-8. PubMed ID: 10578130. Abstract: 1 The D3 dopamine receptor presumably activates Gi/Go subtypes of G-proteins, like the structurally analogous D2 receptor, but its signalling targets have not been clearly established due to weak functional signals from cloned receptors as heterologously expressed in mostly non-neuronal cell lines. 2 In this study, recombinant human D3 receptors expressed in a human neuroblastoma cell line, SH-SY5Y, produced much greater signals than those expressed in a human embryonic kidney cell line, HEK293. Quinpirole, a prototypic agonist, markedly inhibited forskolin-stimulated cyclic AMP production and Ca2+-channel (N-type) currents in SH-SY5Y cells, and enhanced GTPgamma35S binding in isolated membranes, nearly ten times greater than that observed in HEK293 cell membranes. 3 GTPgamma35S-bound Galpha subunits from quinpirole-activated and solubilized membranes were monitored upon immobilization with various Galpha-specific antibodies. Galphao subunits (not Galphai) were highly labelled with GTPgamma35S in SH-SY5Y, but not in HEK293 cell membranes, despite their abundance in the both cell types, as shown with reverse transcription-polymerase chain reaction and Western blots. N-type Ca2+ channels and adenylyl cyclase V (D3-specific effector), on the other hand, exist only in SH-SY5Y cells. 4 More efficient coupling of the D3 receptor to Go subtypes in SH-SY5Y than HEK293 cells may be attributed, at least in part, to the two D3 neuronal effectors only present in SH-SY5Y cells (N-type Ca2+-channels and adenylyl cyclase V). The abundance of Go subtypes in the both cell lines seems to indicate their availability not a limiting factor.[Abstract] [Full Text] [Related] [New Search]