These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of the serotonin2A/2C receptor agonist and antagonist on phencyclidine-induced dopamine release in rat medial prefrontal cortex. Author: Kuroki T, Kawahara T, Yonezawa Y, Tashiro N. Journal: Prog Neuropsychopharmacol Biol Psychiatry; 1999 Oct; 23(7):1259-75. PubMed ID: 10581647. Abstract: 1. Systemic administration of PCP (7.5 mg/kg, i.p.) produced a greater increase in extracellular DA levels in the mPFC than in the STR and NAC, as determined by in vivo microdialysis of awake, freely moving rats. Preferential activation by PCP of prefrontal DA neurons may be, at least in part, the basis for the pathophysiology of PCP-induced psychosis as well as schizophrenia. 2. Recent studies suggest a possible involvement of 5-HT2A receptors in the pathophysiology and treatment of schizophrenia. This study was designed to examine whether and how 5-HT2A receptors modulate PCP-induced DA release in the mPFC. 3. The 5-HT2A/2C receptor agonist (+/-)-DOI (2.5 mg/kg, but not 0.75 mg/kg, i.p.), administered 60 min prior to PCP, significantly attenuated the PCP-induced increase in extracellular DA levels. Pretreatment of the 5-HT2A/2C receptor antagonist ritanserin (1.0 and 5.0 mg/kg, i.p.), administered 60 min prior to PCP, did not influence the PCP-induced increase. When administered alone, neither DOI (2.5 mg/kg) nor ritanserin (1.0 mg/kg) affected basal extracellular DA levels in the mPFC. 4. The NMDA receptor antagonist MK-801 (1.0 mg/kg, i.p.) also increased extracellular DA levels in the mPFC, but this effect was unaffected by pretreatment with DOI (2.5 mg/kg). 5. These results suggest that the stimulation of 5-HT2A/2C receptors may inhibit DA release in the mPFC when it is facilitated by PCP. Other than the NMDA receptor-mediated mechanism may also be involved in the neurochemical interaction between 5-HT2A receptors and PCP in the mPFC.[Abstract] [Full Text] [Related] [New Search]