These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Author: Weng LP, Smith WM, Dahia PL, Ziebold U, Gil E, Lees JA, Eng C. Journal: Cancer Res; 1999 Nov 15; 59(22):5808-14. PubMed ID: 10582703. Abstract: PTEN/MMAC1/TEP1, a tumor suppressor gene, is frequently mutated in a variety of human cancers. Germ-line mutations of phosphatase and tensin homolog, deleted on chromosome ten (PTEN) are found in two inherited hamartoma tumor syndromes: Cowden syndrome, which has a high risk of breast, thyroid, and other cancers; and Bannayan-Zonana syndrome, a related disorder. PTEN encodes a phosphatase that recognizes both protein substrates and phosphatidylinositol-3,4,5-triphosphate. The lipid phosphatase activity of PTEN seems to be important for growth suppression through inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. We established clones with stable PTEN expression controlled by a tetracycline-inducible system to examine the consequences of increased levels of wild-type and mutant PTEN expression in a well-characterized breast cancer line, MCF-7. When we overexpressed PTEN in MCF-7, growth suppression was observed, but only if PTEN phosphatase activity is preserved. The initial growth suppression was attributable to G1 cell cycle arrest, whereas subsequent growth suppression was attributable to a combination of G1 arrest and cell death. Of note, the decrease in Akt phosphorylation preceded the onset-of suppression of cell growth. Treatment of MCF-7 cells with wortmannin, a PI3K inhibitor, caused cell growth inhibition in a way similar to the effects of overexpression of PTEN in this cell. In general, the inverse correlation between PTEN protein level and Akt phosphorylation was found in a panel of breast cancer cell lines. Therefore, PTEN appears to suppress breast cancer growth through down-regulating PI3K signaling, which leads to the blockage of cell cycle progression and the induction of cell death, in a sequential manner.[Abstract] [Full Text] [Related] [New Search]