These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biosynthesis of glycosylphosphatidylinositols of Plasmodium falciparum in a cell-free incubation system: inositol acylation is needed for mannosylation of glycosylphosphatidylinositols.
    Author: Gerold P, Jung N, Azzouz N, Freiberg N, Kobe S, Schwarz RT.
    Journal: Biochem J; 1999 Dec 15; 344 Pt 3(Pt 3):731-8. PubMed ID: 10585859.
    Abstract:
    The structures of glycosylphosphatidylinositols (GPIs) in Plasmodium have been described [Gerold, Schuppert and Schwarz (1994) J. Biol. Chem. 269, 2597-2606]. A detailed understanding of GPI synthesis in Plasmodium is a prerequisite for identifying differences present in biosynthetic pathways of parasites and host cells. A comparison of the biosynthetic pathway of GPIs has revealed differences between mammalian cells and parasitic protozoans. A cell-free incubation system prepared from asexual erythrocytic stages of Plasmodium falciparum, the causative agent of malaria in humans, is capable of synthesizing the same spectrum of GPIs as that found in metabolically labelled parasites. The formation of mannosylated GPIs in the cell-free system is shown to be inhibited by GTP and, unexpectedly, micromolar concentrations of GDP-Man. Lower concentrations of GDP-Man affect the spectrum of GPIs synthesized. The inositol ring of GPIs of P. falciparum is modified by an acyl group. The preferred donor of this fatty acid at the inositol ring is myristoyl-CoA. Inositol acylation has to precede the mannosylation of GPIs because, in the absence of acyl-CoA or CoA, mannosylated GPIs were not detected. Inositol myristoylation is a unique feature of plasmodial GPIs and thus might provide a potential target for drug therapy.
    [Abstract] [Full Text] [Related] [New Search]