These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and beta-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Author: Leutwein C, Heider J. Journal: Microbiology (Reading); 1999 Nov; 145 ( Pt 11)():3265-3271. PubMed ID: 10589736. Abstract: Anaerobic catabolism of toluene is initiated by addition of the methyl group of toluene to the double bond of a fumarate cosubstrate to yield the first intermediate, benzylsuccinate. This reaction is catalysed by the glycyl-radical enzyme benzylsuccinate synthase, as shown for the denitrifying bacterium Thauera aromatica. Benzylsuccinate is further oxidized to benzoyl-CoA, the central intermediate of anaerobic degradation of aromatic compounds. The authors show here by experiments with cell extracts of toluene-grown T. aromatica that the pathway of benzylsuccinate oxidation requires activation of the free acid to a CoA-thioester, catalysed by a toluene-induced, reversible succinyl-CoA-dependent CoA-transferase. The product of the CoA-transferase reaction, benzylsuccinyl-CoA, is oxidized to benzoyl-CoA and succinyl-CoA in extracts of toluene-grown cells, adding proof to the proposed anaerobic toluene-catabolic pathway. The stereochemical preferences of the enzymes catalysing formation and activation of benzylsuccinate have been analysed. Benzylsuccinate synthase was found to produce exclusively (R)-(+)-benzylsuccinate, although the proposed reaction mechanism of this enzyme proceeds via radical intermediates. In accordance, the reaction of succinyl-CoA:benzylsuccinate CoA-transferase is also specific for (R)-(+)-benzylsuccinate and does not proceed with the (S)-(-)-enantiomer.[Abstract] [Full Text] [Related] [New Search]