These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story. Author: McKee ML, FitzGerald DJ. Journal: Biochemistry; 1999 Dec 14; 38(50):16507-13. PubMed ID: 10600112. Abstract: Upon entering mammalian cells, Pseudomonas exotoxin A (PE) is proteolytically processed by furin to produce an N-terminal fragment of 28 kDa and a C-terminal fragment of 37 kDa. Cleavage is followed by the reduction of a key disulfide bond (cysteines 265-287). This combination of proteolysis and reduction releases the 37 kDa C-terminal fragment, which then translocates to the cytosol where it ADP-ribosylates elongation factor 2 and inhibits protein synthesis. To investigate toxin reduction, furin-nicked PE or a hypercleavable mutant, PEW281A, was subjected to various treatments and then analyzed for fragment production. Reduction was evident only when unfolding conditions and a reducing agent were applied. Thermal unfolding of PE, as evidenced by changes in alpha-helical content and increased sensitivity to trypsin, rendered nicked toxin susceptible to protein disulfide isomerase- (PDI-) mediated reduction. When subcellular fractions from toxin-sensitive cells were incubated with nicked PE, toxin unfolding and reducing activities were present in the membrane fraction but not the soluble fraction. These data indicate that PE reduction is a two-step process: unfolding that allows access to the Cys265-287 disulfide bond, followed by reduction of the sulfur-sulfur bond by PDI or a PDI-like enzyme. With regard to cellular processing, we propose that the toxin's three-dimensional structure retains a "closed" conformation that restricts solvent access to the Cys265-287 disulfide bond until after a cell-mediated unfolding event.[Abstract] [Full Text] [Related] [New Search]