These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein.
    Author: Yamamoto N, Moon JH, Tsushida T, Nagao A, Terao J.
    Journal: Arch Biochem Biophys; 1999 Dec 15; 372(2):347-54. PubMed ID: 10600174.
    Abstract:
    To determine the antioxidant activity of dietary quercetin (3,3',4', 5,7-pentahydroxyflavone) in the blood circulation, we measured the inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation of human low-density lipoprotein (LDL). Conjugated quercetin metabolites were prepared from the plasma of rat 1 h after oral administration of quercetin aglycone (40 micromol/rat). The rate of cholesteryl ester hydroperoxide (CE-OOH) accumulation and the rate of alpha-tocopherol consumption in mixtures of LDL solution (0.4 mg/ml) with equal volumes of this preparation were slower than the rates in mixtures of LDL with preparations from control rats. The concentrations of CE-OOH after 2 h oxidation in the mixtures of LDL with preparations of conjugated quercetin metabolites were significantly lower than those in the control preparation. It is therefore confirmed that conjugated quercetin metabolites have an inhibitory effect on copper ion-induced lipid peroxidation in human LDL. Quercetin 7-O-beta-glucopyranoside (Q7G) and rhamnetin (3,3',4', 5-tetrahydroxy-7-methoxyflavone) exerted strong inhibition and their effect continued even after complete consumption, similarly to quercetin aglycone. The effect of quercetin 3-O-beta-glucopyranoside (Q3G) did not continue after its complete consumption, indicating that the antioxidant mechanism of quercetin conjugates lacking a free hydroxyl group at the 3-position is different from that of the other quercetin conjugates. The result that 4'-O-beta-glucopyranoside (Q4'G) and isorhamnetin (3,4',5, 7-tetrahydroxy-3'-methoxyflavone) showed little inhibition implies that introduction of a conjugate group to the position of the dihydroxyl group in the B ring markedly decreases the inhibitory effect. The results of azo radical-induced lipid peroxidation of LDL and the measurement of free radical scavenging capacity using stable free radical, 1,1,-diphenyl-2-picrylhydrazyl, demonstrated that the o-dihydroxyl structure in the B ring is required to exert maximum free radical scavenging activity. It is therefore likely that conjugation occurs at least partly in positions other than the B ring during the process of metabolic conversion so that the inhibitory effect of dietary quercetin is retained in blood plasma after absorption.
    [Abstract] [Full Text] [Related] [New Search]