These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer. Author: Mitsuoka K, Murata K, Walz T, Hirai T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Journal: J Struct Biol; 1999 Dec 01; 128(1):34-43. PubMed ID: 10600556. Abstract: Aquaporin-1 is a water channel found in mammalian red blood cells that is responsible for high water permeability of its membrane. Our electron crystallographic analysis of the three-dimensional structure of aquaporin-1 at 4.5-A resolution confirms the previous finding that each subunit consists of a right-handed bundle of six highly tilted transmembrane helices that surround a central X-shaped structure. In our new potential map, the rod-like densities for the transmembrane helices show helically arranged protrusions, indicating the positions of side chains. Thus, in addition to the six transmembrane helices, observation of helically arranged side-chain densities allowed the identification of two short alpha-helices representing the two branches of the central X-shaped structure that extend to the extracellular and cytoplasmic membrane surfaces. The other two branches are believed to be loops connecting the short alpha-helix to a neighboring transmembrane helix. A pore found close to the center of the aquaporin-1 monomer is suggested to be the course of water flow with implications for the water selectivity.[Abstract] [Full Text] [Related] [New Search]