These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: SP-B refining of pulmonary surfactant phospholipid films.
    Author: Nag K, Munro JG, Inchley K, Schürch S, Petersen NO, Possmayer F.
    Journal: Am J Physiol; 1999 Dec; 277(6):L1179-89. PubMed ID: 10600889.
    Abstract:
    Pulmonary surfactant stabilizes the alveoli by lining the air-fluid interface with films that reduce surface tension to near 0 mN/m (gamma(min)). Surfactant protein B (SP-B) enhances the surface activity of surfactant phospholipids. A captive bubble tensiometer (CBT) was used to study the properties of adsorbed films of dipalmitoylphosphatidylcholine (DPPC) with acidic 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) or neutral 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine with (7:3) and without 1% dimeric SP-B. SP-B enhanced the adsorption rate of DPPC-containing neutral or acidic lipid suspensions (1 mg/ml) to a similar extent. Quasi-static cycling of these films revealed that SP-B significantly decreased the film area reduction required to reach gamma(min) for the acidic but not for the neutral system. The results obtained with DPPC-phosphatidylglycerol (PG)-SP-B were consistent with selective DPPC adsorption into the surface monolayer during film formation. Film area reduction required to reach gamma(min) with this system (with and without calcium) approached that of pure DPPC, suggesting selective DPPC insertion and PG squeeze-out. Dynamic cycling of such films showed that larger film area reductions were required to reach gamma(min) for the neutral than for acidic system, even after 20 cycles. Fluorescence microscopy of solvent-spread DPPC-POPG-SP-B planar films revealed highly condensed structures at approximately 25 mN/m, although no specific PG phase-segregated structures could be identified. The study suggests that specific interactions of SP-B with acidic phospholipids of surfactant may be involved in the generation and maintenance of DPPC-rich films in the alveoli.
    [Abstract] [Full Text] [Related] [New Search]