These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. Author: Hosfield CM, Elce JS, Davies PL, Jia Z. Journal: EMBO J; 1999 Dec 15; 18(24):6880-9. PubMed ID: 10601010. Abstract: The combination of thiol protease activity and calmodulin-like EF-hands is a feature unique to the calpains. The regulatory mechanisms governing calpain activity are complex, and the nature of the Ca(2+)-induced switch between inactive and active forms has remained elusive in the absence of structural information. We describe here the 2.6 A crystal structure of m-calpain in the Ca(2+)-free form, which illustrates the structural basis for the inactivity of calpain in the absence of Ca(2+). It also reveals an unusual thiol protease fold, which is associated with Ca(2+)-binding domains through heterodimerization and a C(2)-like beta-sandwich domain. Strikingly, the structure shows that the catalytic triad is not assembled, indicating that Ca(2+)-binding must induce conformational changes that re-orient the protease domains to form a functional active site. The alpha-helical N-terminal anchor of the catalytic subunit does not occupy the active site but inhibits its assembly and regulates Ca(2+)-sensitivity through association with the regulatory subunit. This Ca(2+)-dependent activation mechanism is clearly distinct from those of classical proteases.[Abstract] [Full Text] [Related] [New Search]