These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. Author: Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR. Journal: J Exp Med; 1999 Dec 20; 190(12):1813-24. PubMed ID: 10601356. Abstract: Infiltrating leukocytes may be responsible for autoimmune disease. We hypothesized that the chemokine monocyte chemoattractant protein (MCP)-1 recruits macrophages and T cells into tissues that, in turn, are required for autoimmune disease. Using the MRL-Fas(lpr) strain with spontaneous, fatal autoimmune disease, we constructed MCP-1-deficient MRL-Fas(lpr) mice. In MCP-1-intact MRL-Fas(lpr) mice, macrophages and T cells accumulate at sites (kidney tubules, glomeruli, pulmonary bronchioli, lymph nodes) in proportion to MCP-1 expression. Deleting MCP-1 dramatically reduces macrophage and T cell recruitment but not proliferation, protects from kidney, lung, skin, and lymph node pathology, reduces proteinuria, and prolongs survival. Notably, serum immunoglobulin (Ig) isotypes and kidney Ig/C3 deposits are not diminished in MCP-1-deficient MRL-Fas(lpr) mice, highlighting the requirement for MCP-1-dependent leukocyte recruitment to initiate autoimmune disease. However, MCP-1-deficient mice are not completely protected from leukocytic invasion. T cells surrounding vessels with meager MCP-1 expression remain. In addition, downstream effector cytokines/chemokines are decreased in MCP-1-deficient mice, perhaps reflecting a reduction of cytokine-expressing leukocytes. Thus, MCP-1 promotes MRL-Fas(lpr) autoimmune disease through macrophage and T cell recruitment, amplified by increasing local cytokines/chemokines. We suggest that MCP-1 is a principal therapeutic target with which to combat autoimmune diseases.[Abstract] [Full Text] [Related] [New Search]