These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ store-dependent potentiation of Ca2+-activated non-selective cation channels in rat hippocampal neurones in vitro. Author: Partridge LD, Valenzuela CF. Journal: J Physiol; 1999 Dec 15; 521 Pt 3(Pt 3):617-27. PubMed ID: 10601493. Abstract: 1. Potentiation of calcium-activated non-selective cation (CAN) channels was studied in rat hippocampal neurones. CAN channels were activated by IP3-dependent Ca2+ release following metabotropic glutamate receptor (mGluR) stimulation either by Schaffer collateral input to CA1 neurones in brain slices in which ionotropic glutamate and GABAA receptors, K+ channels, and the Na+-Ca2+ exchanger were blocked or by application of the mGluR antagonist ACPD in cultured hippocampal neurones. 2. The CAN channel-dependent depolarization (DeltaVCAN) was potentiated when [Ca2+]i was increased in neurones impaled with Ca2+-containing microelectrodes. 3. Fura-2 measurements revealed a biphasic increase in [Ca2+]i when 200 microM ACPD was bath applied to cultured hippocampal neurones. This increase was greatly attenuated in the presence of Cd2+. 4. Thapsigargin (1 microM) caused marked potentiation of DeltaVCAN in CA1 neurones in the slices and of the CAN current (ICAN) measured in whole cell-clamped cultured hippocampal neurones. 5. Ryanodine (20 microM) also led to a potentiation of DeltaVCAN while neurones pretreated with 100 microM dantrolene failed to show potentiation of DeltaVCAN when impaled with Ca2+-containing microelectrodes. 6. The mitochondrial oxidative phosphorylation uncoupler carbonyl cyanide m-chlorophenyl hydrazone (2 microM) also caused a potentiation of DeltaVCAN. 7. CAN channels are subject to considerable potentiation following an increase in [Ca2+]i due to Ca2+ release from IP3-sensitive, Ca2+-sensitive, or mitochondrial Ca2+ stores. This ICAN potentiation may play a crucial role in the 'amplification' phase of excitotoxicity.[Abstract] [Full Text] [Related] [New Search]