These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo. Author: Wang Y, Zhang X. Journal: Virology; 1999 Dec 05; 265(1):96-109. PubMed ID: 10603321. Abstract: The nucleocapsid (N) protein of mouse hepatitis virus (MHV) and the cellular heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) are RNA-binding proteins, binding to the leader RNA and the intergenic sequence of MHV negative-strand template RNAs, respectively. Previous studies have suggested a role for both N and hnRNP-A1 proteins in MHV RNA synthesis. However, it is not known whether the two proteins can interact with each other. Here we employed a series of methods to determine their interactions both in vitro and in vivo. Both N and hnRNP-A1 genes were cloned and expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins, and their interactions were determined with a GST-binding assay. Results showed that N protein directly and specifically interacted with hnRNP-A1 in vitro. To dissect the protein-binding domain on the N protein, 15 deletion constructs were made by PCR and expressed as GST fusion proteins. Two hnRNP-A1-binding sites were identified on N protein: site A is located at amino acids 1 to 292 and site B at amino acids 392 to 455. In addition, we found that N protein interacted with itself and that the self-interacting domain coincided with site A but not with site B. Using a fluorescence double-staining technique, we showed that N protein colocalized with hnRNP-A1 in the cytoplasm, particularly in the perinuclear region, of MHV-infected cells, where viral RNA replication/transcription occurs. The N protein and hnRNP-A1 were coimmunoprecipitated from the lysates of MHV-infected cells either by an N- or by an hnRNP-A1-specific monoclonal antibody, indicating a physical interaction between N and hnRNP-A1 proteins. Furthermore, using the yeast two-hybrid system, we showed that N protein interacted with hnRNP-A1 in vivo. These results thus establish that MHV N protein interacts with hnRNP-A1 both in vitro and in vivo.[Abstract] [Full Text] [Related] [New Search]