These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two distinct antigenic types of the polysaccharide chains of Helicobacter pylori lipopolysaccharides characterized by reactivity with sera from humans with natural infection.
    Author: Yokota SI, Amano KI, Shibata Y, Nakajima M, Suzuki M, Hayashi S, Fujii N, Yokochi T.
    Journal: Infect Immun; 2000 Jan; 68(1):151-9. PubMed ID: 10603381.
    Abstract:
    We have purified lipopolysaccharides (LPS) from 10 Helicobacter pylori clinical isolates which were selected on the basis of chemotype and antigenic variation. Data from immunoblotting of the purified LPS with sera from humans with H. pylori infection and from absorption of the sera with LPS indicated the presence of two distinct epitopes, termed the highly antigenic and the weakly antigenic epitopes, on the polysaccharide chains. Among 68 H. pylori clinical isolates, all smooth strains possessed either epitope; the epitopes were each carried by about 50% of the smooth strains. Thus, H. pylori strains can be classified into three types on the basis of their antigenicity in humans: those with smooth LPS carrying the highly antigenic epitope, those with smooth LPS carrying the weakly antigenic epitope, and those with rough LPS. Sera from humans with H. pylori infection could be grouped into three categories: those containing immunoglobulin G (IgG) antibodies against the highly antigenic epitope, those containing IgG against the weakly antigenic epitope, and those containing both specific IgGs; these groups made up about 50%, less than 10%, and about 40%, respectively, of all infected sera tested. In other words, IgG against the highly antigenic epitope were detected in more than 90% of H. pylori-infected individuals with high titers. IgG against the weakly antigenic epitope were detected in about 50% of the sera tested; however, the antibody titers were low. The two human epitopes existed independently from the mimic structures of Lewis antigens, which are known to be an important epitope of H. pylori LPS. No significant relationship between the reactivities toward purified LPS of human sera and a panel of anti-Lewis antigen antibodies was found. Moreover, the reactivities of the anti-Lewis antigen antibodies, but not human sera, were sensitive to particular alpha-L-fucosidases. The human epitopes appeared to be located on O-polysaccharide chains containing endo-beta-galactosidase-sensitive galactose residues as the backbone. Data from chemical analyses indicated that all LPS commonly contained galactose, glucosamine, glucose, and fucose (except one rough strain) as probable polysaccharide components, together with typical components of inner core and lipid A. We were not able to distinguish between the differences of antigenicity in humans by on the basis of the chemical composition of the LPS.
    [Abstract] [Full Text] [Related] [New Search]