These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Author: Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai LH, Kwon YT, Girault JA, Czernik AJ, Huganir RL, Hemmings HC, Nairn AC, Greengard P. Journal: Nature; 1999 Dec 09; 402(6762):669-71. PubMed ID: 10604473. Abstract: The physiological state of the cell is controlled by signal transduction mechanisms which regulate the balance between protein kinase and protein phosphatase activities. Here we report that a single protein can, depending on which particular amino-acid residue is phosphorylated, function either as a kinase or phosphatase inhibitor. DARPP-32 (dopamine and cyclic AMP-regulated phospho-protein, relative molecular mass 32,000) is converted into an inhibitor of protein phosphatase 1 when it is phosphorylated by protein kinase A (PKA) at threonine 34. We find that DARPP-32 is converted into an inhibitor of PKA when phosphorylated at threonine 75 by cyclin-dependent kinase 5 (Cdk5). Cdk5 phosphorylates DARPP-32 in vitro and in intact brain cells. Phospho-Thr 75 DARPP-32 inhibits PKA in vitro by a competitive mechanism. Decreasing phospho-Thr 75 DARPP-32 in striatal slices, either by a Cdk5-specific inhibitor or by using genetically altered mice, results in increased dopamine-induced phosphorylation of PKA substrates and augmented peak voltage-gated calcium currents. Thus DARPP-32 is a bifunctional signal transduction molecule which, by distinct mechanisms, controls a serine/threonine kinase and a serine/threonine phosphatase.[Abstract] [Full Text] [Related] [New Search]