These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. Author: Lepault F, Gagnerault MC. Journal: J Immunol; 2000 Jan 01; 164(1):240-7. PubMed ID: 10605017. Abstract: The period that precedes onset of insulin-dependent diabetes mellitus corresponds to an active dynamic state in which pathogenic autoreactive T cells are kept from destroying beta cells by regulatory T cells. In prediabetic nonobese diabetic (NOD) mice, CD4+ splenocytes were shown to prevent diabetes transfer in immunodeficient NOD recipients. We now demonstrate that regulatory splenocytes belong to the CD4+ CD62Lhigh T cell subset that comprises a vast majority of naive cells producing low levels of IL-2 and IFN-gamma and no IL-4 and IL-10 upon in vitro stimulation. Consistently, the inhibition of diabetes transfer was not mediated by IL-4 and IL-10. Regulatory cells homed to the pancreas and modified the migration of diabetogenic to the islets, which resulted in a decreased insulitis severity. The efficiency of CD62L+ T cells was dose dependent, independent of sex and disease prevalence. Protection mechanisms did not involve the CD62L molecule, an observation that may relate to the fact that CD4+ CD62Lhigh lymph node cells were less potent than their splenic counterparts. Regulatory T cells were detectable after weaning and persist until disease onset, sustaining the notion that diabetes is a late and abrupt event. Thus, the CD62L molecule appears as a unique marker that can discriminate diabetogenic (previously shown to be CD62L-) from regulatory T cells. The phenotypic and functional characteristics of protective CD4+ CD62L+ cells suggest they are different from Th2-, Tr1-, and NK T-type cells, reported to be implicated in the control of diabetes in NOD mice, and may represent a new immunoregulatory population.[Abstract] [Full Text] [Related] [New Search]