These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Factors affecting membrane permeability and ionic homeostasis in the cold-submerged frog. Author: Donohoe PH, West TG, Boutilier RG. Journal: J Exp Biol; 2000 Jan; 203(Pt 2):405-14. PubMed ID: 10607550. Abstract: Frogs (Rana temporaria) were submerged at 3 degrees C in either normoxic (P(O2)=155 mmHg, P(O2)=20 kPa) or hypoxic (P(O2)=60 mmHg; P(O2)=8 kPa) water for up to 16 weeks, and denied air access, to mimic the conditions of an ice-covered pond during the winter. The activity of the skeletal muscle Na(+)/K(+) pump over the first 2 months of hibernation, measured by ouabain-inhibitable (22)Na(+) efflux, was reduced by 30 % during normoxia and by up to 50 % during hypoxia. The reduction in Na(+)/K(+) pump activity was accompanied by reductions in passive (22)Na(+) influx and (86)Rb(+) efflux (effectively K(+) efflux) across the sarcolemma. This may be due to a decreased Na(+) permeability of the sarcolemma and a 75 % reduction in K(+) leak mediated by ATP-sensitive K(+) channels ('K(ATP)' channels). The lowered rates of (22)Na(+) and (86)Rb(+) flux are coincident with lowered transmembrane ion gradients for [Na(+)] and [K(+)], which may also lower Na(+)/K(+) pump activity. The dilution of extracellular [Na(+)] and intracellular [K(+)] may be partially explained by increased water retention by the whole animal, although measurements of skeletal muscle fluid compartments using (3)H-labelled inulin suggested that the reduced ion gradients represented a new steady state for skeletal muscle. Conversely, intracellular ion homeostasis within ventricular muscle was maintained at pre-submergence levels, despite a significant increase in tissue water content, with the exception of the hypoxic frogs following 4 months of submergence. Both ventricular muscles and skeletal muscles maintained resting membrane potential at pre-submergence levels throughout the entire period of hibernation. The ability of the skeletal muscle to maintain its resting membrane potential, coincident with decreased Na(+)/K(+) pump activity and lowered membrane permeability, provided evidence of functional channel arrest as an energy-sparing strategy during hibernation in the cold-submerged frog.[Abstract] [Full Text] [Related] [New Search]