These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of DNA lesions produced by tumor-inhibitory 1,2-bis(sulfonyl)hydrazines and chloroethylnitrosoureas. Author: Penketh PG, Shyam K, Sartorelli AC. Journal: Biochem Pharmacol; 2000 Feb 01; 59(3):283-91. PubMed ID: 10609557. Abstract: 1,2-Bis(sulfonyl)hydrazine derivatives, designed to generate several of the electrophilic species classically believed to be responsible for the alkylating (chloroethylating) and/or carbamoylating activities of the chloroethylnitrosoureas (CNUs), were compared with respect to the cross-linking and nicking of T7 DNA to that caused by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), and 1-(2-chloroethyl)-3-(4-trans-methylcyclohexyl)-1-nitrosourea (MeCCNU). In the case of BCNU, a large proportion of T7 DNA strand nicking was found to be due to the generation of 2-chloroethylamine, produced from the hydrolysis of 2-chloroethylisocyanate, in turn formed during the decomposition of the parental nitrosourea. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (compound 1) gave a greater yield of DNA cross-links than the CNUs. Compound 1, as well as its derivatives that were incapable of generating 2-chloroethylisocyanate, did not produce detectable levels of strand nicking, indicating that N7-alkylation of guanine did not occur to a significant extent with these agents. Since compound 1 and its derivatives are believed to generate chloronium and chloroethyldiazonium ions, it would appear that these species could not be significantly involved in the N7-alkylation of guanine caused by the CNUs. The relatively low level of N7-alkylation of guanine residues and the relatively high yield of cross-links generated by some of the 1,2-bis(sulfonyl)-1-(2-chloroethyl)hydrazine derivatives implies that they are more exclusive O6-guanine chloroethylating agents than the CNUs. O6-Guanine chloroethylation is believed to be the therapeutically relevant event produced by the CNUs; therefore, compound 1 derivatives represent promising new cancer chemotherapeutic agents, since they appear to generate lower quantities of therapeutically unimportant, yet carcinogenic lesions, and more of the therapeutically relevant O6-guanine chloroethylation than the CNUs.[Abstract] [Full Text] [Related] [New Search]