These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. Author: Wieprecht T, Apostolov O, Beyermann M, Seelig J. Journal: J Mol Biol; 1999 Dec 03; 294(3):785-94. PubMed ID: 10610796. Abstract: Amphipathic alpha-helices are the membrane binding motif in many proteins. The corresponding peptides are often random coil in solution but are folded into an alpha-helix upon interaction with the membrane. The energetics of this ubiquitous folding process are still a matter of conjecture. Here, we present a new method to quantitatively analyze the thermodynamics of peptide folding at the membrane interface. We have systematically varied the helix content of a given amphipathic peptide when bound to the membrane and have correlated the thermodynamic binding parameters determined by isothermal titration calorimetry with the alpha-helix content obtained by circular dichroism spectroscopy. The peptides investigated were the antibiotic magainin 2 amide and three analogs in which two adjacent amino acid residues were substituted by their d-enantiomers. The thermodynamic parameters controlling the alpha-helix formation were found to be linearly related to the helicity of the membrane-bound peptides. Helix formation at the membrane surface is characterized by an enthalpy change of DeltaH(helix) approximately -0.7 kcal/mol per residue, an entropy change of DeltaS(helix) approximately -1.9 cal/molK residue and a free energy change of DeltaG(helix)=-0.14 kcal/mol residue. Helix formation is a strong driving force of peptide insertion into the membrane and accounts for about 50 % of the free energy of binding. An increase in temperature entails an unfolding of the membrane-bound helix. The temperature dependence can be described with the Zimm-Bragg theory and the enthalpy of unfolding agrees with that deduced from isothermal titration calorimetry.[Abstract] [Full Text] [Related] [New Search]