These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states.
    Author: Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Cogé F, Galizzi JP, Boutin JA, Rivet JM, Dekeyne A, Gobert A.
    Journal: Synapse; 2000 Feb; 35(2):79-95. PubMed ID: 10611634.
    Abstract:
    Herein, we evaluate the interaction of the alpha(2)-AR antagonist, yohimbine, as compared to fluparoxan, at multiple monoaminergic receptors and examine their roles in the modulation of adrenergic, dopaminergic and serotonergic transmission in freely-moving rats. Yohimbine displays marked affinity at human (h)alpha(2A)-, halpha(2B)- and halpha(2C)-ARs, significant affinity for h5-HT(1A), h5-HT(1B), h5-HT(1D), and hD(2) receptors and weak affinity for hD(3) receptors. In [(35)S]GTPgammaS binding protocols, yohimbine exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and hD(2) sites, yet partial agonist actions at h5-HT(1A) sites. In vivo, agonist actions of yohimbine at 5-HT(1A) sites are revealed by WAY100,635-reversible induction of hypothermia in the rat. In guinea pigs, antagonist actions of yohimbine at 5-HT(1B) receptors are revealed by blockade of hypothermia evoked by the 5-HT(1B) agonist, GR46,611. In distinction to yohimbine, fluparoxan shows only modest partial agonist actions at h5-HT(1A) sites versus marked antagonist actions at halpha(2)-ARs. While fluparoxan selectively enhances hippocampal noradrenaline (NAD) turnover, yohimbine also enhances striatal dopamine (DA) turnover and suppresses striatal turnover of 5-HT. Further, yohimbine decreases firing of serotonergic neurones in raphe nuclei, an action reversed by WAY100,635. Fluparoxan increases extracellular levels of DA and NAD, but not 5-HT, in frontal cortex. In analogy, yohimbine enhances FCX levels of DA and NAD, yet suppresses those of 5-HT, the latter effect being antagonized by WAY100,635. The induction by fluoxetine of FCX levels of 5-HT, DA, and NAD is potentiated by fluparoxan. Yohimbine likewise facilitates the influence of fluoxetine upon DA and NAD levels, but not those of 5-HT. In conclusion, the alpha(2)-AR antagonist properties of yohimbine increase DA and NAD levels both alone and in association with fluoxetine. However, in contrast to the selective alpha(2)-AR antagonist, fluparoxan, the 5-HT(1A) agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
    [Abstract] [Full Text] [Related] [New Search]