These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Author: Koob GF, Heinrichs SC. Journal: Brain Res; 1999 Nov 27; 848(1-2):141-52. PubMed ID: 10612706. Abstract: Corticotropin-releasing factor (CRF) and CRF-related neuropeptides have an important role in the central nervous system to mediate behavioral responses to stressors. CRF receptor antagonists are very effective in reversing stress-induced suppression and activation in behavior. An additional CRF-like neuropeptide, urocortin, has been identified in the brain and has a high affinity for the CRF-2 receptor in addition to the CRF-1 receptor. Urocortin has many of the effects of CRF but also is significantly more potent than CRF in decreasing feeding in both meal-deprived and free-feeding rats. In mouse genetic models, mice over-expressing CRF show anxiogenic-like responses compared to wild-type mice, and mice lacking the CRF-1 receptor showed an anxiolytic-like behavioral profile compared to wild-type mice. Results to date have led to the hypothesis that CRF-1 receptors may mediate CRF-like neuropeptide effects on behavioral responses to stressors, but CRF-2 receptors may mediate the suppression of feeding produced by CRF-like neuropeptides. Brain sites for the behavioral effects of CRF include the locus coeruleus (LC), paraventricular nucleus (PVN) of the hypothalamus, the bed nucleus of the stria terminalis (BNST), and the central nucleus of the amygdala. CRF may also be activated during acute withdrawal from all major drugs of abuse, and recent data suggest that CRF may contribute to the dependence and vulnerability to relapse associated with chronic administration of drugs of abuse. These data suggest that CRF systems in the brain have a unique role in mediating behavioral responses to diverse stressors. These systems may be particularly important in situations were an organism must mobilize not only the pituitary adrenal system, but also the central nervous system in response to environmental challenge. Clearly, dysfunction in such a fundamental brain-activating system may be the key to a variety of pathophysiological conditions involving abnormal responses to stressors such as anxiety disorders, affective disorders, and anorexia nervosa.[Abstract] [Full Text] [Related] [New Search]