These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular pH in cold-blooded vertebrates as a function of body temperature. Author: Malan A, Wilson TL, Reeves RB. Journal: Respir Physiol; 1976 Oct; 28(1):29-47. PubMed ID: 10614. Abstract: Intracellular pH (pHi) was measured in vivo in tissue of frogs (Rana catesbeiana) and turtles (Pseudemys scripta) using the DMO technique. Animals were permitted 3-8 days to come to a new steady-state body temperature (Tb) which ranged 5-32 degrees C. Least squares regression equation for pHi data are: frog blood, 8.184-0.0206 Tb; frog striated muscle, 7.275-0.0152 Tb; turtle blood, 8.092-0.0207Tb; turtle muscle, 7.421-0.0186 Tb; turtle heart, 7.452-0.0122 Tb; turtle liver, 7.753-0.0233 Tb; turtle esophageal smooth muscle, 7.513-0.0141 Tb. Only turtle cardiac muscle deltapHi/deltaT was significantly different from deltapH/deltaT of blood. Results have been interpreted in terms of protein charge state alterations; in the physiological pH range, histidine residues of proteins are the principal dissociable groups (HPr+ = H+ + Pr) affected by pHi and Tb changes. Constancy of protein charge state can be assessed by monitoring alpha imidazole, alphaIM = Pr/(HPr+ + Pr). A uniform pKIM of 6.85 (20degreesC) and a deltaHO of 7 kcal/mol are assumed in calculating alphaIM. Intracellular alphaIM is preserved in the tissues studied as body temperature changes. These results indicate that ectotherm acid-base balance, alphastat control, regulates not only extracellular blood proteins, but also intracellular compartment proteins in such a way as to preserve functions dependent upon protein net charge states.[Abstract] [Full Text] [Related] [New Search]