These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synaptic interactions between respiratory neurons during inspiratory on-switching evoked by vagal stimulation in decerebrate cats.
    Author: Haji A, Okazaki M, Takeda R.
    Journal: Neurosci Res; 1999 Nov; 35(2):85-93. PubMed ID: 10616912.
    Abstract:
    To elucidate neuronal mechanisms underlying phase-switching from expiration to inspiration, or inspiratory on-switching (IonS), postsynaptic potentials (PSPs) of bulbar respiratory neurons together with phrenic nerve discharges were recorded during IonS evoked by vagal stimulation in decerebrate and vagotomized cats. A single shock stimulation of the vagus nerve applied at late-expiration developed an inspiratory discharge in the phrenic neurogram after a latency of 79+/-11 ms (n = 11). Preceding this evoked inspiratory discharge, a triphasic response was induced, consisting of an early silence (phase 1 silence), a transient burst discharge (phase 2 discharge) and a late pause (phase 3 pause). During phase 1 silence, IPSPs occurred in augmenting inspiratory (aug-I) and expiratory (E2) neurons, and EPSPs in postinspiratory (PI) neurons. During phase 2 discharge, EPSPs arose in aug-I neurons and IPSPs in PI and E2 neurons. These initial biphasic PSPs were comparable with those during inspiratory off-switching evoked by the same stimulation applied at late-inspiration. In both on- and off-switching, phase-transition in respiratory neuronal activities started to arise concomitantly with the phrenic phase 3 pause. These results suggest that vagal inputs initially produce a non-specific, biphasic response in bulbar respiratory neurons, which consecutively activates a more specific process connected to IonS.
    [Abstract] [Full Text] [Related] [New Search]