These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular adenosine increases Na+/I- symporter gene expression in rat thyroid FRTL-5 cells. Author: Harii N, Endo T, Ohmori M, Onaya T. Journal: Mol Cell Endocrinol; 1999 Nov 25; 157(1-2):31-9. PubMed ID: 10619395. Abstract: We studied the effect of extracellular adenosine on iodide (I-) transport in FRTL-5 thyroid cells. I- accumulation increases after a 48 h exposure to adenosine in a concentration-dependent manner, reaching a maximum of 7.9-fold basal levels at 72 h after the addition of 300 microM adenosine. Neither I- efflux nor intracellular cyclic adenosine monophosphate accumulation is affected by the exposure to adenosine. The stimulation of I- transport by adenosine is partly as a result of an increase in Na+/I- symporter (NIS) mRNA and protein levels. Northern blot analysis revealed that adenosine increases NIS mRNA levels at 24 h, reaching a maximum at 36 h. Western blot analysis demonstrated that adenosine increases NIS protein levels at 36 h, reaching a maximum at 72 h, in parallel with the kinetics of adenosine-induced I- transport. Adenosine increased the promoter activity of a full-length NIS promoter-luciferase chimera, suggesting that the effect of adenosine on NIS mRNA levels is transcriptional. The stimulatory effect of adenosine on NIS mRNA levels, is mimicked by N6-(L-2-phenylisopropyl) adenosine (PIA), an A1 adenosine receptor agonist, and inhibited by 1,3-dipropyl-8-cyclopentylxanthine, an A1 adenosine receptor antagonist, suggesting that the effect is mediated via the A1 adenosine receptor stimulation in FRTL-5 cells. Incubating cells with islet-activating protein inhibited the adenosine-induced NIS mRNA levels. In sum, extracellular adenosine increases NIS gene expression and stimulates I- transport via the A1 adenosine receptor-Gi/Go protein signal transduction pathway.[Abstract] [Full Text] [Related] [New Search]