These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding.
    Author: Krantz BA, Moran LB, Kentsis A, Sosnick TR.
    Journal: Nat Struct Biol; 2000 Jan; 7(1):62-71. PubMed ID: 10625430.
    Abstract:
    We have exploited a procedure to identify when hydrogen bonds (H-bonds) form under two-state folding conditions using equilibrium and kinetic deuterium/hydrogen amide isotope effects. Deuteration decreases the stability of equine cytochrome c and the dimeric and crosslinked versions of the GCN4-p1 coiled coil by approximately 0. 5 kcal mol-1. For all three systems, the decrease in equilibrium stability is reflected by a decrease in refolding rates and a near equivalent increase in unfolding rates. This apportionment indicates that approximately 50% of the native H-bonds are formed in the transition state of these helical proteins. In contrast, an alpha/beta protein, mammalian ubiquitin, exhibits a small isotope effect only on unfolding rates, suggesting its folding pathway may be different. These four proteins recapitulate the general trend that approximately 50% of the surface buried in the native state is buried in the transition state, leading to the hypothesis that H-bond formation in the transition state is cooperative, with alpha-helical proteins forming a number of H-bonds proportional to the amount of surface buried in the transition state.
    [Abstract] [Full Text] [Related] [New Search]