These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Angiotensin II induces nuclear factor (NF)-kappaB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-kappaB activation.
    Author: Jamaluddin M, Meng T, Sun J, Boldogh I, Han Y, Brasier AR.
    Journal: Mol Endocrinol; 2000 Jan; 14(1):99-113. PubMed ID: 10628750.
    Abstract:
    The vasopressor angiotensin II (AII) activates transcriptional expression of its precursor, angiotensinogen. This biological "positive feedback loop" occurs through an angiotensin receptor-coupled pathway that activates a multihormone-responsive enhancer of the angiotensinogen promoter, termed the acute-phase response element (APRE). Previously, we showed that the APRE is a cytokine [tumor necrosis factor-alpha (TNFalpha)]- inducible enhancer by binding the heterodimeric nuclear factor-kappaB (NF-kappaB) complex Rel A x NF-kappaB1. Here, we compare the mechanism for NF-kappaB activation by the AII agonist, Sar1 AII, with TNFalpha in HepG2 hepatocytes. Although Sar1 AII and TNFalpha both rapidly activate APRE-driven transcription within 3 h of treatment, the pattern of inducible NF-kappaB binding activity in electrophoretic mobility shift assay is distinct. In contrast to the TNFalpha mechanism, which strongly induces Rel A x NF-kappaB1 binding, Sar1 AII selectively activates a heterogenous pattern of NF-kappaB1 binding. Using a two-step microaffinity DNA binding assay, we observe that Sar1 AII recruits 50-, 56-, and 96-kDa NF-kappaB1 isoforms to bind the APRE. Binding of all three NF-kappaB1 isoforms occurs independently of changes in their nuclear abundance or proteolysis of cytoplasmic IkappaB inhibitors. Phorbol ester-sensitive protein kinase C (PKC) isoforms are required because PKC down-regulation completely blocks AII-inducible transcription and inducible NF-kappaB1 binding. We conclude that AII stimulates the NF-kappaB transcription factor pathway by activating latent DNA-binding activity of NF-kappaB subunits through a phorbol ester-sensitive (PKC-dependent) mechanism.
    [Abstract] [Full Text] [Related] [New Search]