These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mononucleotide gas-phase proton affinities as determined by the kinetic method.
    Author: Green-Church KB, Limbach PA.
    Journal: J Am Soc Mass Spectrom; 2000 Jan; 11(1):24-32. PubMed ID: 10631661.
    Abstract:
    The goal of this work is to determine the proton affinities of (deoxy)nucleoside 5'- and 3'-monophosphates (mononucleotides) using the kinetic method with fast atom bombardment mass spectrometry. The proton affinities of the (deoxy)nucleoside 5'- and 3'-monophosphates yielded the following trend: (deoxy)adenosine monophosphates > (deoxy)guanosine monophosphates > (deoxy)cytidine monophosphates >> deoxythymidine/uridine monophosphates. In all cases the proton affinity decreases or remains the same with the addition of the phosphate group from those values reported for nucleosides. The proton affinity is dependent on the location of the phosphate backbone (5'-vs. 3'-phosphates): the 3'-monophosphates have lower proton affinities than the 5'-monophosphates except for the thymidine/uridine monophosphates where the trend is reversed. Molecular modeling was utilized to determine if multiple protonation sites and intramolecular hydrogen bond formation would influence the proton affinity measurements. Semiempirical calculations of the proton affinities at various locations on each mononucleotide were performed and compared to the experimental results. The possible influence of intramolecular hydrogen bonding between the nucleobases and the phosphate group on the measured and calculated proton affinities is discussed.
    [Abstract] [Full Text] [Related] [New Search]