These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ. Author: Metzger F, Kulik A, Sendtner M, Ballanyi K. Journal: J Neurophysiol; 2000 Jan; 83(1):50-9. PubMed ID: 10634852. Abstract: Intracellular Ca(2+) ([Ca(2+)](i)) was fluorometrically measured with fura-2 in lumbar motoneurons of acutely isolated spinal cord slices from embryonic rats. In ester-loaded cells, bath-applied glutamate (3 microM to 1 mM) evoked a [Ca(2+)](i) increase by up to 250 nM that was abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) plus 2-amino-5-phosphonovalerate (APV). CNQX or APV alone reduced the response by 82 and 25%, respectively. The glutamatergic agonists kainate (KA), quisqualate (QUI), and S-alpha-amino-3-hydroxy-5-methyl-4-isoxalone (S-AMPA) evoked a similar [Ca(2+)](i) transient as glutamate. N-methyl-D-aspartate (NMDA) was only effective to increase [Ca(2+)](i) in Mg(2+)-free saline, whereas [1S,3R]-1-aminocyclopentane-1,3-dicarboxylic acid ([1S,3R]-ACPD) had no effect. The glutamate-induced [Ca(2+)](i) rise was suppressed in Ca(2+)-free superfusate. Depletion of Ca(2+) stores with cyclopiazonic acid (CPA) did not affect the response. Thirty-six percent of the [Ca(2+)](i) increase in response to membrane depolarization induced by a 50 mM K(+) solution persisted on combined application of the voltage-gated Ca(2+) channel blockers nifedipine, omega-conotoxin-GVIA and omega-agatoxin-IVA. In fura-2 dialyzed motoneurons, the glutamate-induced [Ca(2+)](i) increase was attenuated by approximately 70% after changing from current to voltage clamp. Forty percent of the remaining [Ca(2+)](i) transient and 20% of the concomitant inward current of 0.3 nA were blocked by Joro spider toxin-3 (JSTX). The results show that voltage-gated Ca(2+) channels, including a major portion of R-type channels, constitute the predominant component of glutamate-induced [Ca(2+)](i) rises. NMDA and Ca(2+)-permeable KA/AMPA receptors contribute about equally to the remaining component of the Ca(2+) rise. The results substantiate previous assumptions that Ca(2+) influx through JSTX-sensitive KA/AMPA receptors is involved in (trophic) signaling in developing motoneurons.[Abstract] [Full Text] [Related] [New Search]