These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genomic organization of a voltage-gated Na+ channel in a hydrozoan jellyfish: insights into the evolution of voltage-gated Na+ channel genes.
    Author: Spafford JD, Spencer AN, Gallin WJ.
    Journal: Recept Channels; 1999; 6(6):493-506. PubMed ID: 10635065.
    Abstract:
    Voltage-gated Na+ channels are responsible for fast propagating action potentials. The structurally simplest animals known to contain rapid, transient, voltage-gated currents carried exclusively by Na+ ions are the Cnidaria. The Cnidaria are thought to be close to the origin of the metazoan radiation and thus are pivotal organisms for studying the evolution of the Na+ channel gene. Here we describe the genomic organization of the Na+ channel alpha subunit, PpSCN1, from the hydrozoan jellyfish, Polyorchis penicillatus. We show that most of the 20 intron sites in this diploblast are conserved in mammalian Na+ channel genes, with some even shared by Ca2+ channels. One of these conserved introns is spliced by a rare U 12-type spliceosome. Such conservation places the origin of the primary exon arrangement of Na+ channels and different intron splicing mechanisms to at least the common ancestors of diploblasts and triploblasts, approximately 600 million-1 billion years ago.
    [Abstract] [Full Text] [Related] [New Search]