These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis. Author: Maor-Shoshani A, Reuven NB, Tomer G, Livneh Z. Journal: Proc Natl Acad Sci U S A; 2000 Jan 18; 97(2):565-70. PubMed ID: 10639119. Abstract: When challenged by DNA-damaging agents, Escherichia coli cells respond by inducing the SOS stress response, which leads to an increase in mutation frequency by two mechanisms: translesion replication, a process that causes mutations because of misinsertion opposite the lesions, and an inducible mutator activity, which acts at undamaged sites. Here we report that DNA polymerase V (pol V; UmuC), which previously has been shown to be a lesion-bypass DNA polymerase, was highly mutagenic during in vitro gap-filling replication of a gapped plasmid carrying the cro reporter gene. This reaction required, in addition to pol V, UmuD', RecA, and single-stranded DNA (ssDNA)-binding protein. pol V produced point mutations at a frequency of 2.1 x 10(-4) per nucleotide (2.1% per cro gene), 41-fold higher than DNA polymerase III holoenzyme. The mutational spectrum of pol V was dominated by transversions (53%), which were formed at a frequency of 1.3 x 10(-4) per nucleotide (1. 1% per cro gene), 74-fold higher than with pol III holoenzyme. The prevalence of transversions and the protein requirements of this system are similar to those of in vivo untargeted mutagenesis (SOS mutator activity). This finding suggests that replication by pol V, in the presence of UmuD', RecA, and ssDNA-binding protein, is the basis of chromosomal SOS untargeted mutagenesis.[Abstract] [Full Text] [Related] [New Search]