These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PEG-rHuMGDF promotes multilineage hematopoietic recovery in myelosuppressed mice.
    Author: Ulich TR, del Castillo J, Senaldi G, Hartley C, Molineux G.
    Journal: Exp Hematol; 1999 Dec; 27(12):1776-81. PubMed ID: 10641595.
    Abstract:
    PEG-rHuMGDF administered to normal mice is a lineage-specific growth factor for megakaryocytes and platelets as judged by morphologic examination of hematologic cells in marrow and peripheral blood smears. The purpose of this study was to document that PEG-rHuMGDF in myelosuppressed mice promotes multilineage hematopoietic recovery. High-dose 5-fluorouracil (5-FU) in mice results in profound myelosuppression and 0-30% survival. Mice receiving a single dose of PEG-rHuMGDF (1000 microg/kg) 1 day after 5-FU (225 mg/kg) demonstrate an increased survival (76% vs 27% in control mice at 14 days). Compared to surviving controls, PEG-rHuMGDF-treated mice not only show the expected higher platelet counts, but also increased marrow colony-forming unit granulocyte-macrophage, increased multilineage marrow cellularity, and increased neutrophil, monocyte, and lymphocyte counts in peripheral blood. PEG-rHuMGDF- and vehicle-treated mice both develop hepatic abscesses after 5-FU treatment, but the abscesses in the PEG-rHuMGDF-treated mice contain more neutrophils, suggesting that myeloid reconstitution contributes to their survival. Furthermore, survival in 5-FU-treated mice is significantly improved by granulocyte colony-stimulating factor and antibiotics, suggesting that infection rather than thrombocytopenia is the predominant cause of death. PEG-rHuMGDF after 5-FU promotes survival accompanied by accelerated lymphohematopoietic repopulation, suggesting that PEG-rHuMGDF, a lineage-specific thrombopoietic factor in normal mice, promotes multilineage hematopoietic recovery in myelosuppressed mice.
    [Abstract] [Full Text] [Related] [New Search]