These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment.
    Author: Christensen BM, Zelenina M, Aperia A, Nielsen S.
    Journal: Am J Physiol Renal Physiol; 2000 Jan; 278(1):F29-42. PubMed ID: 10644653.
    Abstract:
    Phosphorylation of Ser(256), in a PKA consensus site, in AQP2 (p-AQP2) appears to be critically involved in the vasopressin-induced trafficking of AQP2. In the present study, affinity-purified antibodies that selectively recognize AQP2 phosphorylated at Ser(256) were developed. These antibodies were used to determine 1) the subcellular localization of p-AQP2 in rat kidney and 2) changes in distribution and/or levels of p-AQP2 in response to [desamino-Cys(1),D-Arg(8)]vasopressin (DDAVP) treatment or V(2)-receptor blockade. Immunoelectron microscopy revealed that p-AQP2 was localized in both the apical plasma membrane and in intracellular vesicles of collecting duct principal cells. Treatment of rats with V(2)-receptor antagonist for 30 min resulted in almost complete disappearance of p-AQP2 labeling of the apical plasma membrane with only marginal labeling of intracellular vesicles remaining. Immunoblotting confirmed a marked decrease in p-AQP2 levels. In control Brattleboro rats (BB), lacking vasopressin secretion, p-AQP2 labeling was almost exclusively present in intracellular vesicles. Treatment of BB rats with DDAVP for 2 h induced a 10-fold increase in p-AQP2 labeling of the apical plasma membrane. The overall abundance of p-AQP2, however, was not increased, as determined both by immunoelectron microscopy and immunoblotting. Consistent with this, 2 h of DDAVP treatment of normal rats also resulted in unchanged p-AQP2 levels. Thus the results demonstrate that AQP2 phosphorylated in Ser(256) is present in the apical plasma membrane and in intracellular vesicles and that both the intracellular distribution/trafficking, as well as the abundance of p-AQP2, are regulated via V(2) receptors by altering phosphorylation and/or dephosphorylation of Ser(256) in AQP2.
    [Abstract] [Full Text] [Related] [New Search]