These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Noradrenergic and dopaminergic activity in the hypothalamic paraventricular nucleus after naloxone-induced morphine withdrawal.
    Author: Fuertes G, Laorden ML, Milanés MV.
    Journal: Neuroendocrinology; 2000 Jan; 71(1):60-7. PubMed ID: 10644900.
    Abstract:
    Previous research has shown an increase in hypothalamo-pituitary-adrenal axis activity following naloxone administration to morphine-dependent rats. In the present study, we investigated the adaptive changes in the noradrenaline (NA) and dopamine (DA) systems in the hypothalamic paraventricular nucleus (PVN) during morphine dependence and withdrawal. Additionally, we examined the possible change in 3',5'-cyclic adenosine monophosphate (cAMP) levels in that nucleus under the same conditions. Rats were made dependent on morphine by morphine or placebo (naïve) pellet implantation for 7 days. On day 8, rat groups received an acute injection of saline or naloxone (1 mg/kg subcutaneously) and were decapitated 30 min later. NA and DA content as well as their metabolite production in the PVN were estimated by HPLC/ED. Both plasma corticosterone levels and cAMP concentration in the PVN were measured by RIA. Naloxone administration to morphine-dependent rats (withdrawal) induced a pronounced increase in the production of both the NA metabolite MHPG and the DA metabolite DOPAC and an enhanced NA and DA turnover. Furthermore, an increase in corticosterone secretion was observed in parallel to the changes in catecholamine turnover. However, no alterations in cAMP levels were seen during morphine withdrawal. These results raise the possibility that catecholaminergic afferents to the PVN could play a significant role in the alterations of PVN functions and consequently in the pituitary-adrenal response during morphine abstinence syndrome. These data provide further support for the idea of adaptive changes in catecholaminergic neurons projecting to the PVN during chronic morphine exposure.
    [Abstract] [Full Text] [Related] [New Search]