These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrogenic Ca2+ entry in the rat colonic epithelium.
    Author: Frings M, Schultheiss G, Diener M.
    Journal: Pflugers Arch; 1999 Dec; 439(1-2):39-48. PubMed ID: 10650998.
    Abstract:
    Capacitative Ca2+ entry in isolated rat colonic crypts was induced by dialysing the cells in the whole-cell patch-clamp mode with a pipette solution having a high Ca(2+)-buffering capacity. Under these conditions crypt cell resting potential was lower than normal. Flufe-namate, La3+ and Gd3+, blockers of non-selective cation channels, hyperpolarized the crypt cells and decreased membrane current. This current exhibited a cation selectivity of Na+>Ca2+. In contrast to Na+, Ca(2+) inhibited the current at concentrations exceeding 1 mmol/l. Indirect evidence suggests that the non-selective cation conductance is activated after stimulation of muscarinic receptors. Carbachol, a cholinergic agonist, evoked a transient hyperpolarization and an increase in membrane outwards current. The half-time of the decay of the carbachol response was shortened strongly in the presence of La3+. Fura-2 experiments with isolated crypts confirmed that La3+ inhibited the carbachol-induced increase in intracellular Ca2+. In parallel Ussing chamber experiments, La3+ suppressed the induction of Cl- secretion by carbachol. These results demonstrate that a non-selective cation conductance activated by store depletion may be involved in the regulation of electrolyte transport by agonists of the Ca2+ signalling pathway.
    [Abstract] [Full Text] [Related] [New Search]