These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of Ca2+ influx in the mechanism of tamoxifen-induced apoptosis in HepG2 human hepatoblastoma cells.
    Author: Kim JA, Kang YS, Jung MW, Lee SH, Lee YS.
    Journal: Cancer Lett; 1999 Dec 01; 147(1-2):115-23. PubMed ID: 10660097.
    Abstract:
    The signaling mechanism of tamoxifen (TAM)-induced apoptosis was investigated in HepG2 human hepatoblastoma cells which do not express the estrogen receptor (ER). TAM induced cytotoxicity and DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. TAM increased the intracellular concentration of Ca2+. This effect was completely inhibited by the extracellular Ca2+ chelation with EGTA. TAM also induced a Mn2+ influx, indicating that TAM activated Ca2+ influx pathways. This action of TAM was significantly inhibited by flufenamic acid (FA), a known non-selective cation channel blocker. Quantitative analysis of apoptosis by flow cytometry revealed that treatment with either FA or BAPTA, an intracellular Ca2+ chelator, significantly inhibited TAM-induced apoptosis. These results suggest that intracellular Ca2+ signals may play a central role in the mechanism of the TAM-induced apoptotic cell death in ER-negative HepG2 cells.
    [Abstract] [Full Text] [Related] [New Search]