These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of dipole modifiers on the kinetics of sensitized photoinactivation of gramicidin channels in bilayer lipid membranes. Author: Antonenko YN, Rokitskaya TI, Kotova EA. Journal: Membr Cell Biol; 1999; 13(1):111-20. PubMed ID: 10661474. Abstract: Photodynamic inactivation of gramicidin channels in bilayer lipid membranes induced by single flashes of the visible light in the presence of phthalocyanine has been studied. The kinetic curves of the flash-induced decrease in the gramicidin-mediated electric current are used for determination of the rate constants of formation and termination of gramicidin channels in terms of the channel dimer model. It is revealed that the kinetics of the sensitized photoinactivation of gramicidin in the membrane is altered by agents which modify the dipole potential drop at the membrane-water interface. Addition of phloretin, which is known to decrease the dipole potential drop, slows down the kinetics, whereas the addition of RH421 or 6-ketocholestanol, which increase the dipole potential drop, accelerates the kinetics. It is shown that the photoinactivation kinetics is also slowed down upon the addition of the thyroid hormone L-thyronine, which reduces the dipole potential drop similar to phloretin, as it was found earlier (M. V. Tsybulskaya, Yu. N. Antonenko, A. E. Tropsha, and L. S. Yaguzhinsky, Biofizika 29:801-805 (1984) (in Russian)). It is demonstrated that the changes in the dissociation rate constant of gramicidin dimers under the action of different dipole modifiers correlate with the changes in the dipole potential drop. It is concluded that the process of the gramicidin channel termination corresponding to the dimer dissociation is sensitive to the dipole potential drop. This conclusion is supported by the data on the effect of dipole modifiers on the lifetime of single gramicidin channels.[Abstract] [Full Text] [Related] [New Search]