These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Miscibility of phosphatidylethanolamine-phosphatidylglycerol mixtures as a function of pH and acyl chain length.
    Author: Garidel P, Blume A.
    Journal: Eur Biophys J; 2000; 28(8):629-38. PubMed ID: 10663530.
    Abstract:
    We have examined the mixing properties of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), the major components of many bacterial membranes. The phase transition behavior of dilute aqueous suspensions of PE:PG mixtures with different chain lengths (n = 14, 16) in 0.1 M NaCl at pH 7 and pH 2 was investigated by differential scanning calorimetry (DSC). The DSC curves were simulated using an approach which takes into account the broadening of the phase transition in addition to symmetric, non-ideal mixing in the gel and the liquid-crystalline phase. Based on the temperatures for onset and end of "melting" obtained by the simulations, the phase diagrams were constructed and then refined using a regular solution model with non-symmetric mixing in both phases. The mixing properties of PE:PG mixtures were analyzed as a function of pH and acyl chain length. In almost all cases, non-symmetric mixing behavior was observed, i.e. the non-ideality parameters are different for bilayers with low PG content compared to bilayers with high PG content. For equimolar mixtures at pH 7, when PG is negatively charged, the non-ideality parameters are negative for both phases, indicating preferential formation of mixed pairs. This mixed pair formation is more pronounced for the gel phase. At pH 2, when PG is partly protonated, the non-ideality parameter is less negative and the formation of mixed pairs is reduced compared to pH 7. The formation of PE:PG mixed pairs at pH 7 might be of benefit to a bacterial membrane, because it prevents demixing of lipid components with a concomitant destabilization of the membrane.
    [Abstract] [Full Text] [Related] [New Search]