These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine.
    Author: Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J, Hamon M, Lanfumey L.
    Journal: Neuropharmacology; 2000; 39(1):110-22. PubMed ID: 10665824.
    Abstract:
    Quantification of receptor binding sites and their encoding mRNAs, and electrophysiological recordings, were used to assess central serotonin (5-HT) neurotransmission in rats 24 h after a 2-3 week treatment with the selective 5-HT reuptake inhibitor fluoxetine (8 mg/kg i.p., daily). Binding studies showed that this treatment affected neither 5-HT1A nor 5-HT1B binding sites in all brain areas examined. However, a significant decrease (-38%) in 5-HT1A mRNA levels in the anterior raphe area (but not forebrain regions) and increases in 5-HT1B mRNA levels in the striatum (+127%) and the cerebral cortex (+34%) were noted in fluoxetine-treated rats. Electrophysiological recordings in brain slices showed that chronic fluoxetine treatment reduced the potency of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin to inhibit neuronal activity in the dorsal raphe nucleus, but did not affect 5-HT1A-evoked responses of CA1 pyramidal cells in the hippocampus. These data further demonstrate that fluoxetine-induced adaptive changes in 5-HT neurotransmission exhibit marked regional differences. The decrease in 5-HT1A mRNA levels in the anterior raphe suggests that fluoxetine-induced desensitization of 5-HT1A autoreceptors involves changes at the transcription level.
    [Abstract] [Full Text] [Related] [New Search]