These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of K(+) channel expression in polyamine-dependent intestinal epithelial cell migration.
    Author: Wang JY, Wang J, Golovina VA, Li L, Platoshyn O, Yuan JX.
    Journal: Am J Physiol Cell Physiol; 2000 Feb; 278(2):C303-14. PubMed ID: 10666025.
    Abstract:
    Polyamines are essential for cell migration during early mucosal restitution after wounding in the gastrointestinal tract. Activity of voltage-gated K(+) channels (Kv) controls membrane potential (E(m)) that regulates cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)) by governing the driving force for Ca(2+) influx. This study determined whether polyamines are required for the stimulation of cell migration by altering K(+) channel gene expression, E(m), and [Ca(2+)](cyt) in intestinal epithelial cells (IEC-6). The specific inhibitor of polyamine synthesis, alpha-difluoromethylornithine (DFMO, 5 mM), depleted cellular polyamines (putrescine, spermidine, and spermine), selectively inhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression, and resulted in membrane depolarization. Because IEC-6 cells did not express voltage-gated Ca(2+) channels, the depolarized E(m) in DFMO-treated cells decreased [Ca(2+)](cyt) as a result of reduced driving force for Ca(2+) influx through capacitative Ca(2+) entry. Migration was reduced by 80% in the polyamine-deficient cells. Exogenous spermidine not only reversed the effects of DFMO on Kv1.1 channel expression, E(m), and [Ca(2+)](cyt) but also restored cell migration to normal. Removal of extracellular Ca(2+) or blockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cell migration by exogenous spermidine in polyamine-deficient cells. These results suggest that polyamine-dependent intestinal epithelial cell migration may be due partially to an increase of Kv1.1 channel expression. The subsequent membrane hyperpolarization raises [Ca(2+)](cyt) by increasing the driving force (the electrochemical gradient) for Ca(2+) influx and thus stimulates cell migration.
    [Abstract] [Full Text] [Related] [New Search]