These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuropeptide Y(5) receptors reduce synaptic excitation in proximal subiculum, but not epileptiform activity in rat hippocampal slices.
    Author: Ho MW, Beck-Sickinger AG, Colmers WF.
    Journal: J Neurophysiol; 2000 Feb; 83(2):723-34. PubMed ID: 10669488.
    Abstract:
    Neuropeptide Y (NPY) potently inhibits excitatory synaptic transmission in the hippocampus, acting predominantly via a presynaptic Y(2) receptor. Recent reports that the Y(5) receptor may mediate the anticonvulsant actions of NPY in vivo prompted us to test the hypothesis that Y(5) receptors inhibit synaptic excitation in the hippocampal slice and, furthermore, that they are effective in an in vitro model of anticonvulsant action. Two putative Y(5) receptor-preferring agonists inhibited excitatory postsynaptic currents (EPSCs) evoked by stimulation of stratum radiatum in pyramidal cells. We recorded initially from area CA1 pyramidal cells, but subsequently switched to cells from the subiculum, where a much greater frequency of response was observed to Y(5) agonist application. Both D-Trp(32)NPY (1 microM) and [ahx(8-20)]Pro(34)NPY (3 microM), a centrally truncated, Y(1)/Y(5) agonist we synthesized, inhibited stimulus-evoked EPSCs in subicular pyramidal cells by 44.0 +/- 5.7% and 51.3 +/- 3.5% (mean +/- SE), in 37 and 58% of cells, respectively. By contrast, the less selective centrally truncated agonist, [ahx(8-20)] NPY (1 microM), was more potent (66.4 +/- 4.1% inhibition) and more widely effective, suppressing the EPSC in 86% of subicular neurons. The site of action of all NPY agonists tested was most probably presynaptic, because agonist application caused no changes in postsynaptic membrane properties. The selective Y(1) antagonist, BIBP3226 (1 microM), did not reduce the effect of either more selective agonist, indicating that they activated presynaptic Y(5) receptors. Y(5) receptor-mediated synaptic inhibition was more frequently observed in slices from younger animals, whereas the nonselective agonist appeared equally effective at all ages tested. Because of the similarity with the previously reported actions of Y(2) receptors, we tested the ability of Y(5) receptor agonists to suppress stimulus train-induced bursting (STIB), an in vitro model of ictaform activity, in both area CA3 and the subiculum. Neither [ahx(8-20)]Pro(34)NPY nor D-Trp(32)NPY were significantly effective in suppressing or shortening STIB-induced afterdischarge, with <20% of slices responding to these agonists in recordings from CA3 and none in subiculum. By contrast, 1 microM each of [ahx(8-20)]NPY, the Y(2) agonist, [ahx(5-24)]NPY, and particularly NPY itself suppressed the afterdischarge in area CA3 and the subiculum, as reported earlier. We conclude that Y(5) receptors appear to regulate excitability to some degree in the subiculum of young rats, but their contribution is relatively small compared with those of Y(2) receptors, declines with age, and is insufficient to block or significantly attenuate STIB-induced afterdischarges.
    [Abstract] [Full Text] [Related] [New Search]