These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum. Author: Yang H, Fitz-Gibbon S, Marcotte EM, Tai JH, Hyman EC, Miller JH. Journal: J Bacteriol; 2000 Mar; 182(5):1272-9. PubMed ID: 10671447. Abstract: U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methanobacterium thermoautotrophicum, a thermophile with an optimal growth temperature of 65 degrees C. We report characterization of a putative DNA glycosylase from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100 degrees C. The open reading frame was first identified through a genome sequencing project in our laboratory. The predicted product of 230 amino acids shares significant sequence homology to [4Fe-4S]-containing Nth/MutY DNA glycosylases. The histidine-tagged recombinant protein was expressed in Escherichia coli and purified. It is thermostable and displays DNA glycosylase activities specific to U/G and T/G mismatches with an uncoupled AP lyase activity. It also processes U/7,8-dihydro-oxoguanine and T/7,8-dihydro-oxoguanine mismatches. We designate it Pa-MIG. Using sequence comparisons among complete bacterial and archaeal genomes, we have uncovered a putative MIG protein from another hyperthermophilic archaeon, Aeropyrum pernix. The unique conserved amino acid motifs of MIG proteins are proposed to distinguish MIG proteins from the closely related Nth/MutY DNA glycosylases.[Abstract] [Full Text] [Related] [New Search]