These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Butanolic fraction from Cuphea carthagenensis Jacq McBride relaxes rat thoracic aorta through endothelium-dependent and endothelium-independent mechanisms. Author: Schuldt EZ, Ckless K, Simas ME, Farias MR, Ribeiro-Do-Valle RM. Journal: J Cardiovasc Pharmacol; 2000 Feb; 35(2):234-9. PubMed ID: 10672855. Abstract: This study evaluated the vasorelaxant properties of the crude hydroalcoholic extract (CE) of Cuphea carthagenensis, as well as its butanolic (BF) and ethyl acetate (EA) fractions, in rings of rat thoracic aorta. In endothelium-intact rings contracted with phenylephrine (30-100 nM), cumulative additions of increasing concentrations of CE, BF, and EA of C. carthagenensis (0.1 microg/ml-3 mg/ml) caused graded relaxations, with BF displaying the lowest median inhibitory concentration (IC5; mean, 6.8 microg/ml; 95% confidence limits, 3.3-14.2). BF-induced relaxations of endothelium-intact rings were virtually abolished by prior incubation with the NO-synthase inhibitor N(omega)-nitro-L-arginine (L-NOARG; 10 or 30 microM), and were markedly reduced after guanylate cyclase inhibition with either methylene blue (10 microM) or ODQ (1 microM; 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). The inhibition of BF-induced relaxation by L-NOARG was prevented to a large extent by simultaneous incubation with L-arginine (1 mM). In endothelium-denuded rings contracted with phenylephrine, CE and BF caused graded relaxations only at doses >100 microg/ml, whereas the NO-donors SNAP (S-nitroso-N-acetyl-penicillamine) and SIN-1 (3-morpholino-sydnonimine) induced full relaxation at 1 microM. BF (100 microg/ml), which caused little relaxation per se of endothelium-denuded rings, potentiated the relaxant effects of SNAP and even more so of SIN-1 (which, unlike SNAP, also releases superoxide anion O2- in addition to NO), in a manner qualitatively similar to that seen with SOD (superoxide dismutase) against SIN-1. These data indicate that the BF of C. carthagenensis induces relaxation of the rat thoracic aorta by two mechanisms: (a) an endothelium-dependent component of action, which clearly depends on the NO/cyclic guanosine monophosphate (cGMP) pathway and can be attributed, at least in part, to free radical-scavenging properties; and (b) an endothelium-independent component of action, which becomes evident at higher doses (> or = 100 microg/ml) and remains to be further characterized. These results suggest that this native South American plant might be beneficial in cardiovascular disease.[Abstract] [Full Text] [Related] [New Search]