These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chlorobiphenyl-desleucyl-vancomycin inhibits the transglycosylation process required for peptidoglycan synthesis in bacteria in the absence of dipeptide binding. Author: Goldman RC, Baizman ER, Longley CB, Branstrom AA. Journal: FEMS Microbiol Lett; 2000 Feb 15; 183(2):209-14. PubMed ID: 10675585. Abstract: Novel glycopeptide analogs are known that have activity on vancomycin resistant enterococci despite the fact that the primary site for drug interaction, D-ala-D-ala, is replaced with D-ala-D-lactate. The mechanism of action of these compounds may involve dimerization and/or membrane binding, thus enhancing interaction with D-ala-D-lactate, or a direct interaction with the transglycosylase enzymes involved in peptidoglycan polymerization. We evaluated the ability of vancomycin (V), desleucyl-vancomycin (desleucyl-V), chlorobiphenyl-vancomycin (CBP-V), and chlorobiphenyl-desleucyl-vancomycin (CBP-desleucyl-V) to inhibit (a) peptidoglycan synthesis in vitro using UDP-muramyl-pentapeptide and UDP-muramyl-tetrapeptide substrates and (b) growth and peptidoglycan synthesis in vancomycin resistant enterococci. Compared to V or CBP-V, CBP-desleucyl-V retained equivalent potency in these assays, whereas desleucyl-V was inactive. In addition, CBP-desleucyl-V caused accumulation of N-acetylglucosamine-beta-1, 4-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol (lipid II). These data show that CBP-desleucyl-V inhibits peptidoglycan synthesis at the transglycosylation stage in the absence of binding to dipeptide.[Abstract] [Full Text] [Related] [New Search]