These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Corticotrophin-releasing hormone and fetal responses in human pregnancy.
    Author: Sandman CA, Wadhwa P, Glynn L, Chicz-Demet A, Porto M, Garite TJ.
    Journal: Ann N Y Acad Sci; 1999; 897():66-75. PubMed ID: 10676436.
    Abstract:
    During human pregnancy, maternal and fetal compartments of the human placenta produce and release corticotrophic-releasing hormone (CRH). Elevations of placental CRH are associated with decreased gestational length (including preterm delivery). The effects of elevated placental CRH on human fetal neurological development are not known. Pregnant women in the 31st and 32nd week of gestation consented to procedures for collection of blood and measurement of fetal heart rate (FHR) in response to a series of 40 vibro-acoustic stimuli (VAS). Measures of habituation and dishabituation were calculated from the FHR. All subjects were followed to delivery. Fetuses (N = 33) of women with highly elevated CRH were least responsive (p < .03) to stimulation after presentation of a novel (dishabituating) stimulus with control for parity, fetal gender, medical (antepartum) risk, and gestational length at term. In a larger sample (N = 156) a polynomial model predicted the pattern of FHR reactivity for the first 15 trials. Placental CRH concentration significantly predicted FHR reactivity after controlling for the effects of trial number, baseline FHR, inter-trial interval, and presence of uterine contractions. Increased maternal CRH levels were significantly related to the length of gestation after controlling for the effects of fetal gender, parity, and medical risk (p = .05). The relationship between length of gestation and FHR was not significant suggesting separate actions of CRH on these events. Elevated placental CRH appears to accelerate certain developmental events (gestational length) and may influence the fetal nervous system. The impaired fetal responses to novelty and increased arousal observed in this study suggest that neurological systems may be targets for placental CRH during sensitive developmental periods.
    [Abstract] [Full Text] [Related] [New Search]