These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Melatonin inhibits pituitary adenylyl cyclase-activating polypeptide-induced increase of cyclic AMP accumulation and [Ca2+]i in cultured cells of neonatal rat pituitary.
    Author: Slanar O, Pelisek V, Vanecek J.
    Journal: Neurochem Int; 2000 Mar; 36(3):213-9. PubMed ID: 10676855.
    Abstract:
    The effects of melatonin on pituitary adenylyl cyclase-activating polypeptide-induced increase of cyclic AMP and [Ca2+]i were studied in neonatal rat pituitary cells. The polypeptide increased cyclic AMP accumulation. In the presence of melatonin the increase of cyclic AMP was inhibited in a dose-dependent manner, the maximal inhibition was achieved with 1-10 nM melatonin. Pituitary adenylyl cyclase-activating polypeptide also increased [Ca2+]i in 30% of the pituitary cells and melatonin inhibited the effect. Most of the cells sensitive to adenylyl cyclase-activating polypeptide (77%) were also sensitive to GnRH, suggesting they are gonadotrophs. The remaining cells were not identified. The polypeptide-induced [Ca2+]i increase was inhibited in Ca2+-free medium in 2/3 of the cells indicating that Ca2+ influx was involved. To examine causal relationship between cyclic AMP and [Ca2+]i increase, we have studied the effect of adenylyl cyclase activation by forskolin on intracellular Ca2+ concentration. Forskolin had similar effects as adenylyl cyclase-activating polypeptide: it increased [Ca2+]i in the pituitary cells and the increase was dependent on presence of Ca2+ in the medium. Melatonin inhibited the forskolin induced [Ca2+]i increase. Our observations indicate that increase of cyclic AMP stimulates Ca2+ influx in the pituitary cells of neonatal rat and that this mechanism is involved in [Ca2+]i increase induced by the pituitary adenylyl cyclase-activating polypeptide. Because melatonin inhibits increase of cyclic AMP induced by pituitary adenylyl cyclase-activating polypeptide or forskolin, the inhibitory effect of melatonin on Ca2+-influx may be mediated by the decrease of cyclic AMP concentration. This mechanism of melatonin action has not been described previously. Because melatonin inhibits the polypeptide- or forskolin-induced [Ca2+]i also in the cells not sensitive to GnRH, melatonin receptors seem to be present on both gonadotrophs and non-gonadotrophic pituitary cells.
    [Abstract] [Full Text] [Related] [New Search]