These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ligand-triggered stabilization of vitamin D receptor/retinoid X receptor heterodimer conformations on DR4-type response elements.
    Author: Quack M, Carlberg C.
    Journal: J Mol Biol; 2000 Feb 25; 296(3):743-56. PubMed ID: 10677278.
    Abstract:
    Nuclear receptors integrate an incoming signal in the form of a nuclear hormone by undergoing a conformational change that results via co-activator proteins in an activation of the basal transcriptional machinery. The vitamin D(3) receptor is the nuclear receptor for 1alpha,25-dihydroxyvitamin D(3 )(1alpha,25(OH)(2)D(3)) and is known to function as a heterodimer with the retinoid X receptor on DR3-type 1alpha,25(OH)(2)D(3) response elements. Here, it could be demonstrated that DR4-type response elements are at least as effective as DR3-type 1alpha,25(OH)(2)D(3) response elements. Gel shift clipping analysis showed that vitamin D(3) receptor-retinoid X receptor heterodimers form in response to 1alpha, 25(OH)(2)D(3) and retinoid X receptor ligands, the pan-agonist 9-cis retinoic acid (9cRA) and the retinoid X receptor-selective retinoid CD2425, different conformations on the DR4-type element of the rat Pit-1 gene. Interestingly, on this response element the heterodimeric complexes of retinoid X receptor with the thyroid hormone receptor, the retinoic acid receptor and the benzoate ester receptor also displayed characteristic individual ligand-dependent complex formation. On the level of complex formation, utilizing DNA affinity and functional assays, only vitamin D(3) receptor-retinoid X receptor heterodimers showed a synergistic interaction of both ligands. However, the sensitivity of vitamin D(3) receptor-retinoid X receptor heterodimers to 1alpha,25(OH)(2)D(3) was found to be much higher than to retinoid X receptor ligands. Taken together, this study demonstrates a unique interaction potential of vitamin D(3) receptor and retinoid X receptor but also establishes DR4-type response elements as multi-functional DNA binding sites with a potential to integrate various hormone signalling pathways.
    [Abstract] [Full Text] [Related] [New Search]